dy/dx = x - y
Use
substitution:
v = x - y
Differentiate with respect to
x
dv/dx = 1 - dy/dx
dy/dx = 1 - dv/dx
Now we use
above substitutions in differential equations
dy/dx = x - y
1 -
dv/dx = v
dv/dx = 1 - v
dv/(1-v) = dx
Now
integrate both sides:
intg dv/(1-v) =
intg dx
-ln (1-v) =
x+c
ln(1-v) = -x - c
1 - v =
e^(-x-c) = [e^(-x)][e^(-c)]
1 - v = (C)e^(-x) , where C
= e^(-Cc)
1 - (x - y) =
(C)e^(-x)
y - x + 1 =
(C)e^(-x)
y = (C)e^(-x) + x -
1
Here is an example with a similar
problem.
src="https://www.youtube.com/embed/iSHFmV1xxhk" frameborder="0"
allowfullscreen="">[embedded content]
No comments:
Post a Comment